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Abstract: A superconformal generalization of Dirac’s formalism for manifest conformal

covariance is presented and applied to the free (2, 0) tensor multiplet field theory in six

dimensions. A graded symmetric superfield, defined on a supercone in a higher-dimensional

superspace is introduced. This superfield transforms linearly under the transformations of

the supergroup OSp(8∗|4), which is the superconformal group of the six-dimensional (2, 0)

theory. We find the relationship between the new superfield and the conventional (2, 0)

superfields in six dimensions and show that the implied superconformal transformation

laws are correct. Finally, we present a manifestly conformally covariant constraint on the

supercone, which reduces to the ordinary differential constraint for the superfields in the

six-dimensional space-time.
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1. Introduction

In 1936, P. Dirac [1] introduced a novel way of treating conformal symmetry. By considering

fields living on a projective hypercone, defined in a conformal space with two additional

dimensions compared to the usual Minkowski space-time, he found a way of making this

symmetry manifest. Since then, his work has been refined and extended [2 – 5], most

notably by G. Mack and A. Salam [6]. The latter paper provides a careful recipe for how

to reduce manifestly covariant fields on the projective hypercone to conventional space-time

fields.

The purpose of the present paper is to generalize this recipe, and Dirac’s hypercone for-

malism, to incorporate manifest superconformal symmetry. It is well known that consistent

superconformal field theories cannot exist in space-times with more than six dimensions.

Moreover, the largest possible supersymmetry consistent with superconformal invariance

in six dimensions is the chiral N = (2, 0) [7]. As a concrete example of these concepts,

we have chosen to work in the context of this six-dimensional (2, 0) theory [8], or more

concretely, with the free (2, 0) tensor multiplet field theory.

We will rely heavily on a previous publication [9] treating the superconformal symmetry

of the (2, 0) tensor multiplet, and we will refer frequently to results obtained there. This

paper also provides a more detailed description of the origins and the degrees of freedom

of the theory.

The outline and the main results of the present paper are as follows: section 2 in-

troduces the superconformal theory, characterized by the supergroup OSp(8∗|4). This

supergroup is the isometry group for a superconformal space with eight bosonic and four

fermionic dimensions, and the group transformations act linearly on the coordinates in this

space. We introduce an invariant projective supercone (which is a superspace generaliza-

tion of Dirac’s hypercone) in the superconformal space and show how to relate this to the

conventional coordinates in (2, 0) superspace.
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In section 3, a new graded symmetric superfield is defined, living on the supercone.

We demand this field to be supertraceless and require its contraction with the superspace

coordinate to vanish everywhere on the supercone; this yields an algebraic relationship to

the superfields of the (2, 0) tensor multiplet. This relation is consistent with an interesting

generalization of Mack and Salam’s recipe and we find that a linear OSp(8∗|4) transfor-

mation of the new superfield implies the known superconformal transformation laws for

the (2, 0) superfields. The foundation for the new recipe is to require both translations

and supersymmetry transformations to act only differentially on fields, and it should be

applicable to other superconformal theories as well.

Finally, in section 4 we show that the differential constraint, which is necessary for

the consistency of the superfield formulation in the six-dimensional space-time, may be

formulated in a simple and manifestly conformally covariant way in the superconformal

space.

2. The superconformal group and the supercone

Consider a superspace with eight bosonic and four fermionic dimensions, having the natural

isometry group OSp(8∗|4). We will call this the superconformal space, in analogy with

Dirac’s notion [1] of a conformal space in the bosonic case.

The fundamental (anti)commutation relations defining OSp(8∗|4) are [10, 11]
[

JAB, JCD

}

= −1

2

(

IBCJAD − (−1)ABIACJBD − (−1)CDIBDJAC +(−1)AB+CDIADJBC

)

, (2.1)

where obviously JAB is the generator and the bracket in the left hand side is an anticom-

mutator if both entries in it are fermionic, otherwise it is a commutator. The indices A and

B are superindices and will be further explained and decomposed below. JAB is graded

antisymmetric while the superspace metric IAB is graded symmetric and the induced scalar

product between vectors is invariant under an OSp(8∗|4) transformation, which can be seen

as a definition of the supergroup.

When acting on fields, the generator JAB is conventionally decomposed as

JAB = LAB + sAB, (2.2)

where LAB is the differential (orbital) piece and sAB is the intrinsic (spin) piece. The latter

acts only on the indices of the field.

By using the concept of triality in eight dimensions [11, 9], we regard the superindex A

to be composed of α̂ = (1, . . . , 8), which is a chiral SO(6, 2) spinor index, and a = (1, . . . , 4),

which is a fundamental USp(4) index (or equivalently, an SO(5) spinor index). Further-

more, α̂ can naturally be decomposed into one chiral SO(5, 1) spinor index α = (1, . . . , 4)

(subscript) and one anti-chiral SO(5, 1) spinor index α = (1, . . . , 4) (superscript). Using

this decomposition, we may make contact with the usual notation for the superconformal

group in six dimensions with (2, 0) supersymmetry. We find that the definitions

JAB =









1
2Pαβ

1
2M

β
α + 1

4δ
β

α D i

2
√

2
Qb

α

−1
2M

α
β − 1

4δ
α

β D −1
2Kαβ i

2
√

2
ΩbcSα

c

− i

2
√

2
Qa

β − i

2
√

2
ΩacS

β
c iUab









(2.3)
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and

IAB =







0 δ
β

α 0

δα
β 0 0

0 0 iΩab






, (2.4)

together with eq. (2.1) reproduce all commutation relations of the six-dimensional super-

conformal group with conventions as in Ref. [9]. We have also introduced the R-symmetry

invariant antisymmetric tensor Ωab in the purely fermionic piece of the superspace metric.

It is convenient to define an inverse superspace metric, i.e. a metric with superscript

indices. This becomes

IAB =







0 δα
β 0

δ
β

α 0 0

0 0 −iΩab






, (2.5)

which makes the relation

IABIBC = δC

A
(2.6)

valid (which is essential if we want to raise and lower indices). This requires that ΩabΩ
bc =

δ c
a .

The next step is to introduce coordinates in the superconformal space. The most

common choice would be to choose the vector representation of SO(6, 2) for the bosonic

coordinates. However, we will instead use another eight-dimensional representation, the

chiral spinor, for these coordinates. The fermionic coordinates are in the fundamental

four-dimensional representation of USp(4).

Thus, the coordinates in the superconformal space are denoted by yA = (yα̂, ya) =

(yα, yα, ya). It should be emphasized that yα̂ are commuting (Grassmann even) while ya

are anti-commuting (Grassmann odd). We also introduce a derivative ∂A such that

∂AyB = IAB. (2.7)

The use of a chiral spinor instead of the usual coordinate vector introduces a subtlety

concerning reality. There is no Majorana-Weyl spinor in eight dimensions with signature

(6, 2), which means that the components of yα̂ cannot all be real [12]. The standard way of

introducing a reality condition is instead to attach a fundamental SU(2) index i = (1, 2) to

yα̂ and impose a symplectic SU(2) Majorana condition. This additional R-symmetry can

be motivated from the quaternionic structure of the conformal group SO(6, 2) ' SO(4; H).

However, we will treat yα̂ as an ordinary complex chiral spinor in this paper and not impose

any reality condition.

In Ref. [9], we related the coordinates yA of the superconformal space to the conven-

tional (2, 0) superspace coordinates xαβ = −xβα (six bosonic coordinates) and θα
a (sixteen

fermionic coordinates) by introducing a projective supercone, inspired by Dirac’s hyper-

cone [1]. This supercone is defined by

y2 ≡ IAByAyB = 0, (2.8)
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which clearly is invariant under OSp(8∗|4) transformations. We will be interested in solu-

tions to this condition of the form

ya =
√

2Ωabθ
β
b yβ

yα =
(

2xαβ − iΩabθα
a θ

β
b

)

yβ,
(2.9)

where the parameters xαβ = −xβα and θα
a a priori need not be the corresponding coordi-

nates in (2, 0) superspace. That this in fact is the case is indicated by considering their

behavior under superconformal symmetry transformations; by requiring the left-hand and

the right-hand sides of eq. (2.9) to transform equally, we find that the parameters must

transform according to the known transformation laws [9, 13] for the corresponding (2, 0)

superspace coordinates. Due to the projectiveness, we may always multiply the coordinate

yA by a constant and still remain on the supercone; this feature is obvious in eq. (2.9) as

well.

We should also mention that these relations look just like the super-twistor relations

introduced by Ferber [14]. However, twistors [15 – 17] are conventionally used to describe

the phase-space of on-shell particles while our aim is to consider space-time itself, without

conjugate momenta. Twistors in six dimensions have been used in complex notation in

Ref. [18] and in quaternionic notation in Ref. [19]. Our usage of twistors is rather similar

to Witten’s in the context of MHV amplitudes [20, 21]. We regard the coordinate yA as

a homogeneous coordinate in a projective super-twistor space. The latter space is a copy

of the supermanifold CP
7|4. We cannot take the coordinates to be real, but we can do the

next best thing: we will only consider functions that depend on yα̂ and ya, not on their

complex conjugates.

3. Covariant fields

In this section, we will consider the (2, 0) tensor multiplet in six dimensions. Its bosonic con-

tent is a self-dual three-form gauge field hαβ = hβα and five scalar fields φab, transforming

in the vector representation of SO(5). This requires that Ωabφ
ab = 0. The fermionic fields

of the tensor multiplet are denoted ψa
α(x), transforming as chiral spinors under Lorentz

transformations and in the 4 representation of the R-symmetry group.

Since we are describing a supersymmetric field theory, it is convenient to work with

superfields. For the (2, 0) tensor multiplet, there is an on-shell superfield formulation [22] in

terms of a superfield Φab(x, θ), defined over the (2, 0) superspace discussed in the previous

section. Its use in our model is described thoroughly in Ref. [23].

The superfield obeys the algebraic constraint ΩabΦ
ab = 0, but also the differential

constraint

Da
αΦbc +

2

5
ΩdeD

d
α

(

ΩabΦec + ΩcaΦeb +
1

2
ΩbcΦea

)

= 0, (3.1)

where Da
α is the covariant superspace derivative, defined according to

Da
α = ∂a

α + iΩacθγ
c ∂αγ . (3.2)
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In this expression and onwards, ∂αβ denotes the derivative with respect to xαβ while ∂a
α is

the derivative with respect to θα
a .

It is convenient to define supplementary superfields according to

Ψa
α = −2i

5
ΩbcD

b
αΦca

Hαβ =
1

4
ΩabD

a
αΨb

β,

(3.3)

but it should be noted that these contain no new degrees of freedom compared to Φab. The

lowest components of the superfields Φab, Ψa
α and Hαβ are the tensor multiplet fields φab,

ψa
α and hαβ , hence the notation. The differential constraint (3.1) implies the free equations

of motion for these fields.

After these preliminaries, we aim to construct a new superfield, living on the supercone

defined in eq. (2.8). This is supposed not only to transform linearly under superconformal

transformations, but we also want it to contain all the fields of the tensor multiplet.

In order to incorporate self-duality in the eight-dimensional space in a simple way,

we use Siegel’s formalism [24 – 26], where the manifestly covariant field corresponding to a

three-form field strength in six dimensions is a four-form field. A self-dual four-form in eight

dimensions transforms in the 35+ representation of the Lorentz group. This representation

can also be built from two symmetric chiral spinor indices, if we require tracelessness with

respect to the eight-dimensional metric. Concretely, this means that we may write the

self-dual four-form as H
α̂β̂

. The tracelessness is accomplished by requiring that

I α̂β̂H
α̂β̂

= 0, (3.4)

where I α̂β̂ is the purely bosonic piece of the metric IAB in eq. (2.5).

Generalizing this to the superconformal space, it is natural to introduce a graded

symmetric tensor field defined on the supercone, denoted by ΥAB(y). It should be super-

traceless, meaning that

IABΥAB = 0. (3.5)

In line with the general discussion by Mack and Salam [6], we demand the field to be a

homogeneous function of y, i.e.

1

2
ICDyC∂DΥAB = nΥAB. (3.6)

We take the degree of homogeneity to be n = −2; this will be motivated later.

The superfield ΥAB also has to satisfy a subsidiary condition that reduces the number

of degrees of freedom. The natural covariant expression that we impose on the field is

IAByAΥBC = 0, (3.7)
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which should be valid on the entire supercone. If we expand this constraint by means of

eq. (2.9), we find that

Υ β
α =

(

2xβγ + iθβ · θγ
)

Υαγ −
√

2iθβ
b Υ b

α

Υaβ =
(

2xβγ + iθβ · θγ
)

Υ a
γ +

√
2iθβ

b Υab

Υαβ =
(

2xβγ + iθβ · θγ
)

Υ α
γ −

√
2iθβ

b Υαb,

(3.8)

where the dot product between two θ-coordinates is defined according to

θα · θβ ≡ Ωabθα
a θ

β
b , (3.9)

and this quantity is obviously symmetric in the spinor indices α and β.

From eq. (3.8), we see that the most general solution to the algebraic equation (3.7)

is parametrized by the fields Υαβ , Υ b
α and Υab. The supertracelessness condition (3.5)

becomes

ΩabΥ
ab = 2θα · θβΥαβ − 2

√
2θα

a Υ a
α , (3.10)

and effectively removes one of the components in the parametrization fields. This sug-

gests that we may use the superfields Φab, Ψa
α and Hαβ (or rather, the corresponding

tensor multiplet fields, but it is more convenient to work with superfields) defined above to

parametrize ΥAB. However, from the supertracelessness condition it follows that we cannot

simply identify these with the parametrization components in ΥAB, since Φab is supposed

to be traceless.

The solution to this problem is to let

Υαβ =
1

γ2
Hαβ

Υ b
α =

1

γ2

[

− 3√
2
Ψb

α +
√

2Ωbcθγ
c Hαγ

]

Υab =
1

γ2

[

−6iΦab − 3Ωacθγ
c Ψb

γ + 3Ωbcθγ
c Ψa

γ + 2ΩacΩbdθγ
c θδ

dHγδ

]

,

(3.11)

where we have introduced factors of a projective parameter γ to take the degree of homo-

geneity into account [6].

The remaining components in ΥAB follow from eq. (3.8) and are

Υ β
α =

1

γ2

[

(2xβγ − iθβ · θγ)Hαγ + 3iθβ
c Ψc

α

]

Υαβ =
1

γ2

[

(2xαγ − iθα · θγ)(2xβδ − iθβ · θδ)Hγδ − 12iθα
a θ

β
b Φab+

+ 6iθ(α
a (2xβ)γ − iθβ) · θγ)Ψa

γ

]

Υαb =
1

γ2

[

(2xαγ − iθα · θγ)

(√
2Ωbdθδ

dHγδ −
3√
2
Ψb

γ

)

−

− 6
√

2θα
a Φab + 3

√
2iΩbcθγ

c θα
a Ψa

γ

]

.

(3.12)
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In this way, we have found a unique expression for the field ΥAB in terms of some fields

Hαβ , Ψa
α and Φab.

Eq. (3.11) and (3.12) may be summarized in a very compact notation, where

ΥAB =
1

γ2
exp

(

−2xγδsγδ + 2
√

2iθγ
ds d

γ

)

HAB. (3.13)

The matrix HAB is given by

HAB =







Hαβ 0 − 3√
2
Ψb

α

0 0 0

− 3√
2
Ψa

β 0 −6iΦab






, (3.14)

and only contains the superfields in the (2, 0) tensor multiplet (no explicit coordinate

dependence). Note that HAB is not a covariant field in the superconformal space, it is just

a compact way of collecting the superfields.

We also need the action of the intrinsic OSp(8∗|4) generator sAB on a field with two

superindices; this is given by

sCDΥAB =
1

2
(IDAΥCB − (−1)CDICAΥDB + (−1)ABIDBΥCA − (−1)AB+CDICBΥDA) (3.15)

and is consistent with the commutation relations (2.1).

Since the commutators [x · s, x · s], [x · s, θ · s] and [θ · s, θ · s] all are zero, we may also

write the inverse relation

HAB = γ2 exp
(

2xγδsγδ − 2
√

2iθγ
ds d

γ

)

ΥAB. (3.16)

This is an important result, stating how to extract the (2, 0) tensor multiplet fields from a

manifestly superconformally covariant field on the supercone. Alternatively, it shows how

to build a covariant field from the tensor multiplet superfields. If we compare this to the

general recipe by Mack and Salam [6], we note that the relations between the fields are very

similar. In that paper, the fields in the conformal space are multiplied by an operator V (x),

with the purpose of making the generator of translations act only differentially (without

any intrinsic piece) on the fields in six dimensions. In our case, this operator is replaced

by

V (x, θ) = exp
(

2xγδsγδ − 2
√

2iθγ
ds d

γ

)

, (3.17)

which makes both translations and supersymmetry transformations act only differentially

on the (2, 0) superfields.

Following Mack and Salam [6], this suggests a way of transforming the other generators

of superconformal transformations according to

JAB → V (x, θ)JABV −1(x, θ). (3.18)

This gives the explicit generators acting on HAB, and the corresponding transformations

laws may be found rather easily. These are found to agree with the known [9] trans-

formation laws for the superfields forming the (2, 0) tensor multiplet, showing that our
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anticipation was correct — the fields used to parametrize the solution to the algebraic

constraint (3.7) may consistently be interpreted as the superfields of the (2, 0) tensor mul-

tiplet. This derivation also yields a nice insight into the origins of the different pieces of

the transformation laws.

4. The differential constraint

What is the purpose of finding a manifestly covariant formalism? An obvious advantage of

such a formulation is the possibility to find covariant quantities and transformation laws in

a simple way. For example, if we write down a scalar in the superconformal space composed

of covariant quantities, we know that its corresponding field in the ordinary superspace will

be invariant (in a certain sense, see below) under superconformal transformations.

The simplest non-zero OSp(8∗|4) scalar that we may form from our ingredients is

quadratic in the field ΥAB(y) and written as

IADIBCΥABΥCD = −36
1

γ4
ΩacΩbdΦ

abΦcd, (4.1)

where we used eqs. (3.11) and (3.12) to translate the fields ΥAB(y) to (2, 0) superfields.

We recognize the right-hand side of this equation as the scalar related to the string tension

when the tensor multiplet is coupled to a self-dual string [23]. This shows that this quantity,

designed to be invariant under supersymmetry, is a superconformal scalar.

Usually, a scalar field transforms only differentially, but in the case of superconformal

scalars we have to include the homogeneity degree as well. This means that

δ
(

ΩacΩbdΦ
abΦcd

)

= [δx · ∂ + δθ · ∂ + 4Λ(x, θ)]
(

ΩacΩbdΦ
abΦcd

)

, (4.2)

in agreement with the transformation laws in Ref. [9]. Λ(x, θ) ≡ λ − 2c · x + iρ · θ is a

superspace-dependent parameter function, including the parameters for dilatations, special

conformal transformations and special supersymmetry transformations.

Let us move on to the main purpose of this section: to investigate whether the dif-

ferential constraint (3.1) for the superfield Φab(x, θ) may be formulated in a manifestly

covariant way, with respect to superconformal symmetry. We expect this to be possible,

since the differential constraint respects superconformal symmetry and is formulated in

terms of superfields and superderivatives.

We do not have very many quantities to build such a covariant constraint from. Con-

sidering what the differential constraint and the derived constraints in Ref. [23] look like,

we expect the covariant expression to have four free superindices.

Firstly, note that the graded symmetry of IAB and eq. (3.15) together imply that

s[ABΥC]D = 0, (4.3)

where, of course, the antisymmetrization is graded.
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Having done this observation, it makes sense to consider the related equation

L[ABΥC]D = 0, (4.4)

which is a differential analogue of eq. (4.3). Using the expressions (3.11) and (3.12) for

ΥAB(y) together with explicit expressions for the different pieces of LAB, we find that

the equation is satisfied exactly when the superfield Φab(x, θ) obeys the differential con-

straint (3.1), but only if the degree of homogeneity of ΥAB is n = −2. The latter observation

is interesting and shows that n cannot be chosen freely.

This means that we may indeed formulate a manifestly superconformally covariant

differential constraint, namely

J[ABΥC]D = 0. (4.5)

This also implies that the tensor multiplet fields must obey the free equations of motion,

since they are a consequence of the differential constraint. So, the constraint (4.5) is both

a constraint on the superfield ΥAB and an equation of motion.

This important result is quite remarkable — eq. (4.5) contains a lot of information

about the tensor multiplet fields in a very simple and manifestly superconformally covariant

formulation.

To conclude: we have constructed a manifestly superconformally covariant formulation

of the six-dimensional (2, 0) tensor multiplet, by considering a graded symmetric superfield

on a projective supercone in a superspace with eight bosonic and four fermionic dimen-

sions. We have also found a covariant expression for the differential constraint, which is

essential for the consistency of the conventional (2, 0) superfield formulation. Hopefully,

this formalism may be applied to other problems in this theory, as a useful tool to include

superconformal covariance in a manifest way. It should also be possible to generalize these

concepts to other superconformal theories.
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